El procesamiento semántico del continuum concreto – abstracto: una revisión de los principales problemas teóricos y metodológicos

Juan Luis Satt Román

Resumen

El procesamiento de conceptos abstractos es un fenómeno psicolingüístico que se relaciona íntimamente con la representación del conocimiento. Considerando esto, en las ciencias cognitivas se ha abordado esta distinción tanto a nivel filosófico, lingüístico, psicológico y neurológico. La confluencia de estas disciplinas ha permitido caracterizar, de manera discreta, al conocimiento concreto como aquel que descansa en información experiencial y lingüística, mientras que el conocimiento abstracto como aquel conocimiento que descansa primordialmente en información lingüística. Myachykov y Fischer (2019) han argumentado que aspectos sensoriomotores, experienciales y contextuales son relevantes para la determinación del nivel de abstracción de un concepto y su representación mental, lo que implicaría que, potencialmente, un mismo concepto podría representarse como concreto o abstracto, en función de estas dimensiones. En este sentido, en la literatura experimental ha existido un foco en el estudio del procesamiento de casos paradigmáticos de lo concreto y lo abstracto, dejando de lado el hecho de que el conocimiento se articula en una escala de abstracción, dejando de lado a aquellos conceptos que se ubican lejos de lo paradigmáticamente concreto y abstracto. En este sentido cabe preguntarse, cómo se pueden integrar la discusión teórica respecto de la relación entre lo abstracto y lo concreto, las evidencias cognitivas y los hallazgos actuales de las neurociencias, a fin de esbozar una respuesta interdisciplinaria a los modos en que nos representamos el conocimiento que posee distintos niveles de abstracción. A partir de esto, en el presente trabajo nos propusimos identificar los principales problemas teóricos y metodológicos que surgen en el estudio de los conceptos concretos y abstractos y su procesamiento. Para ello se abordaron, por un lado, el contraste entre el conocimiento concreto y el conocimiento abstracto; y, por otro lado, el contraste entre las propuestas modales y amodales de la representación del conocimiento.


 

Citas

Allport, D. (1985). Distributed memory, modular subsystems and dysphasia. In S. K. Newman & R. Epstein (Eds.), Current perspectives in dysphasia. Edinburgh: Churchill Livingston.
Alyahya, R., Halai, A., Conroy, P. & Ralph, M. (2018). The behavioral patterns and neural correlates of concrete and abstract verb processing in aphasia: a novel verb semantic battery. NeuroImage Clin. 17, 811–825. doi: 10.1016/j.nicl.2017.12.009
Barr, R. & Caplan, L. (1987). Category representations and their implications for category structure. Memory and Cognition, 15(5), 397–418. doi:10.3758/BF03197730
Barsalou, L. (1999). Perceptual Symbol Systems. Behavioral and Brain Sciences, 22: 577–609.
Barsalou, L. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
Barsalou, L. & Wiemer-Hastings, K. (2005). Situating abstract concepts. En Grounding Cognition: The Role of Perception and Action in Memory, Language, and Thinking, eds D. Pecher and R. A. Zwaan (Cambridge: Cambridge University Press), 129–163. doi: 10.1017/CBO9780511499968.007
Bedny, M. & Thompson-Schill, S. (2006). Neuroanatomically separable effects of imageability and grammatical class during single-word comprehension. Brain Lang. 98, 127–139. doi: 10.1016/j.bandl.2006.04.008
Binder, J. Westbury, C. McKiernan, K. Possing, E. & Medler, D. (2005). Distinct brain systems for processing concrete and abstract concepts. J. Cogn. Neurosci. 17, 905–917. doi: 10.1162/0898929054021102
Binder, J., Desai, R., Graves, W. & Conant, L. (2009). Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cerebral Cortex, 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055
Borghi, A. & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. New York, NY: Springer.
Borghi, A., Barca, L. Binkofski, F. Castelfranchi, C. Pezzulo, G. & Tummolini, L. (2018). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–153. DOI: https://doi.org/10.1016/j.plrev.2018.12.001
Borghi, A. & Zarcone, E. (2016). Grounding abstractness: abstract concepts and the activation of the mouth. Front. Psychol. 7:1498. doi: 10.3389/fpsyg.2016. 01498
Buccino, G., Colagè, I., Silipo, F. & D'Ambrosio, P. (2019). The concreteness of abstract language: an ancient issue and a new perspective. Brain structure & function, 224(4), 1385–1401. https://doi.org/10.1007/s00429-019-01851-7
Carbonnel, S., Charnallet, A., David, D. & Pellat, J. (1997). One or several semantic system(s)? Maybe none: Evidence from a case study of modality and category-specific semantic impairment. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 33(3), 391–417.
Chiel, H. & Beer, R. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences, 20(12), 553–557.
Connell, L. & Lynott, D. (2012). Strength of perceptual experi- ence predicts word processing performance better than con- creteness or imageability. Cognition, 125, 452–465. doi:10. 1016/j.cognition.2012.07.010
Connell, L. Lynott, D. & Banks, B. (2018). Interoception: The for- gotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B, 373(1752), 20170143. doi:10.1098/rstb.2017.0143
Crutch, S. (2006). Qualitatively different semantic representations for abstract and concrete words: further evidence from the semantic reading errors of deep dyslexic patients. Neurocase 12, 91–97. doi: 10.1080/13554790500507172
Crutch, S. & Warrington, E. (2005). Abstract and concrete concepts have structurally different representational frame- works. Brain, 128(3), 615–627. doi:10.1093/brain/awh349
Dehaene, S. & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384–398.
Dove G. (2016). Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic bulletin & review, 23(4), 1109–1121. https://doi.org/10.3758/s13423-015-0825-4
Dove G. (2020). More than a scaffold: Language is a neuroenhancement. Cognitive neuropsychology, 37(5-6), 288–311. https://doi.org/10.1080/02643294.2019.1637338
Farah, M. & McClelland, J. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of Experimental Psychology: General, 120(4), 339–357.
Fliessbach, K., Weis, S., Klaver, P., Elger, C. E. & Weber, B. (2006). The effect of word concreteness on recognition memory. Neuroimage 32, 1413–1421. doi: 10.1016/j.neuroimage.2006.06.007
Fodor, J. (1998). Concepts: Where Cognitive Science Went Wrong, New York: Oxford University Press.
Frege, G. (1956). The Thought: A Logical Inquiry. Mind, 65(259), 289-311.
Hoffman, P., Jefferies, E. & Lambon Ralph, M. (2010). Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: convergent neuropsychological and repetitive TMS evidence. J. Neurosci. 30, 15450–15456. doi: 10.1523/JNEUROSCI.3783-10.2010
Hoffman, P., Binney, R. & Lambon Ralph, M. (2015). Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex, 63, 250–266. https://doi.org/10.1016/j.cortex.2014.09.001
Kiefer, M. & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825.
Kousta, S., Vigliocco, G., Vinson, D., Andrews, M. & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140,14–34. doi:10.1037/a0021446
Lenci, A., Lebani, G. & Passaro, L. (2018). The emotions of abstract words: a distributional semantic analysis. Top. Cogn. Sci. 10, 550–572. doi: 10.1111/tops. 12335
Mahon, B. & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60, 27–51.
Margolis, E. & Laurence, S. (1999). Concepts: Core Readings. MIT Press.
Marschark, M. & Paivio, A. (1977). Integrative processing of con- crete and abstract sentences. Journal of Verbal Learning and Verbal Behavior, 16, 217–231. doi:10.1016/S0022-5371 (77)80048-0
Martin, A. (2007). The Representation of Object Concepts in the Brain. Annual Review of Psychology, 58(1), 25–45. https://doi.org/10.1146/annurev.psych.57.102904.190143
Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin and Review, 23(4), 979–990.
McCarthy, R. & Warrington, E. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334(6181), 428–430.
Mestres-Missé, A., Münte, T. & Rodriguez-Fornells, A. (2014). Mapping concrete and abstract meanings to new words using verbal contexts. Second Language Research, 30(2), 191-223.
Myachykov, A. & Fischer, M. H. (2019). A hierarchical view of abstractness: Grounded, embodied, and situated aspects: Comment on "Words as social tools: Language, sociality and inner grounding in abstract concepts" by Anna M. Borghi et al. Physics of life reviews, 29, 161–163. https://doi.org/10.1016/j.plrev.2019.04.005
Paivio, A. (1965). Abstractness, imagery, and meaningfulness in paired-associate learning. Journal of Verbal Learning and Verbal Behavior, 4(1), 32–38.
Paivio, A. (1986). Mental representations: A dual coding approach. Oxford: Oxford University Press.
Paivio, A. (1990). “Dual coding theory,” en Mental Representations: A Dual Coding Approach, eds D. E. Broadbent, J. L. McGaugh, N. J. Mackintosh, M. I. Posner, E. Tulving, and L. Weiskrantz (Oxford: Oxford University Press), 53–83. doi: 10.1093/acprof:oso/9780195066661.003.0004
Peelen, M. & Caramazza, A. (2012). Conceptual object representations in human anterior temporal cortex. J. Neurosci. 32, 15728–15736. doi: 10.1523/ jneurosci.1953-12.2012
Pexman, P., Hargreaves, I., Edwards, J., Henry, L. & Goodyear, B. (2007). Neural correlates of concreteness in semantic categorization. J. Cogn. Neurosci. 19, 1407–1419. doi: 10.1162/jocn.2007.19.8.1407
Pulvermüller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17(9), 458–470.
Recchia, G. & Jones, M. (2012). The semantic richness of abstract concepts. Frontiers in Human Neuroscience, 6, 315. doi:10.3389/fnhum.2012.00315
Robson, H., Zahn, R., Keidel, J., Binney, R., Sage, K. & Ralph, M. (2014). The anterior temporal lobes support residual comprehension in Wernicke’s aphasia. Brain 137, 931–943. doi: 10.1093/brain/awt373
Rosch, E. (1978). Principles of Categorization, in E. Rosch & B. Lloyd (eds.), Cognition and Categorization, Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 27–48.
Sabsevitz, D., Medler, D., Seidenberg, M., & Binder, J. (2005). Modulation of the semantic system by word imageability. Neuroimage 27, 188–200. doi: 10.1016/j.neuroimage.2005.04.012
Siakaluk, P., Pexman, P., Sears, C., Wilson, K., Locheed, K. & Owen, W. (2008). The benefits of sensorimotor knowledge: Body-object interaction facilitates semantic processing. Cognitive Science, 32, 591–605. doi:10.1080/036402108020 35399
Schwanenflugel, P., Akin, C. & Luh, W. (1992). Context availability and the recall of abstract and concrete words. Memory & Cognition. 20. 96-104. 10.3758/BF03208259.
Schwanenflugel, P. & Shoben, E. (1983). Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9,82–102. doi:10.1037/ 0278-7393.9.1.82
Schwanenflugel, P. & Stowe, R. (1989). Context availability and the processing of abstract and concrete words in sentences. Reading Research Quarterly, 24(1), 114–126. https://doi.org/10.2307/748013
Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Lang. Cogn. 1, 219–247. doi: 10.1515/langcog. 2009.011
Visser, M., Jefferies, E., Embleton, K. V. & Lambon R. (2012). Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion corrected FMRI evidence for a double gradient of information convergence in the temporal lobes. J. Cogn. Neurosci. 24, 1766–1778. doi: 10.1162/jocn_a_ 00244
Witt, J. & Proffitt, D. (2008). Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1479–1492.
Yee, E. (2019). Abstraction and concepts: when, how, where, what and why? Language, Cognition and Neuroscience, 34(10), 1257–1265. https://doi.org/10.1080/23273798.2019.1660797
Yee, E., & Thompson-Schill, S. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23(4), 1015–1027. https://doi.org/10.3758/s13423-015-0948-7

Autores/as

Juan Luis Satt Román
juan.satt@pucv.cl ( Contacto principal )
Satt Román , J. L. . (2025). El procesamiento semántico del continuum concreto – abstracto: una revisión de los principales problemas teóricos y metodológicos . Logos: Revista De Lingüística, Filosofía Y Literatura, 35(2), 868–880. https://doi.org/10.15443/RL3560

Detalles del artículo