Abstract
Metabolic and neurodegenerative conditions pose a significant global health cha-llenge, necessitating innovative strategies that address underlying mechanisms rather than merely managing symptoms. Emerging research highlights skeletal muscle as a central regulator of systemic metabolism and inter-organ communication, mediated by its secretome, epigenetic plasticity, and structural integrity. The muscle secretome, a complex array of signaling proteins, influences lipid and glucose metabolism, tis-sue remodeling, and neuroprotective pathways, thereby offering new avenues for bio-marker discovery and therapeutic intervention. Epigenetic regulation—encompassing DNA methylation, histone modifications, and miRNA expression—mediates exercise-induced transcriptional adaptations that enhance mitochondrial biogenesis, metabolic flexibility, and inflammatory control. Conversely, muscle atrophy disrupts these adap-tive processes, contributing to insulin resistance, chronic inflammation, and neurode-generation through altered proteostasis and mitochondrial dysfunction. These inter-connected mechanisms underscore skeletal muscle’s pivotal role in maintaining syste-mic homeostasis. Interventions such as exercise training, nutritional modulation, and pharmacological targeting of myokines or epigenetic enzymes show promise for per-sonalized therapies. Future research should prioritize integrative approaches that exa-mine the crosstalk between muscle-derived factors, metabolic regulation, and neuro-plasticity. Understanding how the muscle secretome and its epigenetic regulation in-teract to prevent atrophy and promote resilience could transform the management of metabolic and neurodegenerative disorders, paving the way for precision medicine.
References
Logroscino G, Urso D, Savica R. Descriptive epidemiology of neurodegenerative diseases: what are the critical questions? Neuroepidemiology. 2022;56(5):309-18. doi:10.1159/000525639. PMID:35728570; PMCID:PMC9677839.
Li Y, Zhang H, Zhang M, Xu M, Chen J, Chen Y, et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023;35(6):1053-1065.e5. doi:10.1016/j.cmet.2023.02.020.
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New insights and potential therapeutic inter-ventions in metabolic diseases. Int J Mol Sci. 2023;24(13):10672. doi:10.3390/ijms241310672. PMID:37445852; PMCID:PMC10342188.
Ni Lochlainn M, Cox NJ, Wilson M, et al. The gut-muscle axis in health and disea-
se: potential targets for intervention. Front Nutr. 2024;11:1418778. doi:10.3389/fnut.2024.141877
Lovric´ A, Rassolie A, Alam S, et al. Single-cell sequencing deconvolutes cellu-lar responses to exercise in human skeletal muscle. Commun Biol. 2022;5:1121. doi:10.1038/s42003-022-04088-z.
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The role of the skeletal mus-cle secretome in mediating endurance and resistance training adaptations. Front Physiol. 2021;12:709807. doi:10.3389/fphys.2021.709807.
Wang YJ, Zhang X, Li J, et al. A promising therapeutic approach for skeletal mus-cle atrophy. World J Stem Cells. 2025;17(2):98693. doi:10.4252/wjsc.v17.i2.98693.
Florin A, Lambert C, Sanchez C, Zappia J, Durieux N, Tieppo AM, Mobasheri A, Henrotin Y. The secretome of skeletal muscle cells: A systematic review. Osteo-arthr Cartil Open. 2020;2(1):100019. doi:10.1016/j.ocarto.2019.100019. PMID:36474563; PMCID:PMC9718214.
Boström P, Ruiz JR, Pedraza N, et al. From skeletal muscle hormone regulation to myokine secretion. J Clin Med. 2025;14(13):4490. doi:10.3390/jcm14134490.
Geiger C, Needhamsen M, Emanuelsson EB, et al. DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biol. 2024;22:147. doi:10.1186/s12915-024-01938-6.
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ.
Impact of physical activity and exercise on the epigenome in skeletal muscle and
effects on systemic metabolism. Biomedicines. 2022;10(126). doi:10.3390/biomedicines10010126
Lim C, Shimizu J, Kawano F, Kim HJ, Kim CK. Adaptive responses of histone mo-difications to resistance exercise in human skeletal muscle. PLoS One. 2020;15(4):e0231321. doi:10.1371/journal.pone.0231321.
Gómez de Cedrón M, Moreno Palomares R, Ramírez de Molina A. Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic di-seases and ageing. Front Oncol. 2023;13:1169168. doi:10.3389/fonc.2023.1169168. PMID:37404756; PMCID:PMC10315663.
Jeong M, McColl T, Clarke DC. Mechanisms of muscle atrophy in type 2 diabetes mellitus: factors dysregulating muscle protein synthesis and breakdown. Appl Physiol Nutr Metab. 2025;50:1-22. doi:10.1139/apnm-2025-0017. PMID:40706090.
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. FoxO trans-cription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399-412. doi:10.1016/S0092-8674(04)00400-3.
Pang X, Zhang P, Chen X, Liu W. Ubiquitin-proteasome pathway in skeletal mus-cle atrophy. Front Physiol. 2023;14:1289537. doi:10.3389/fphys.2023.1289537.
Soehnlein O, Libby P. Targeting inflammation in atherosclerosis: from experimen-
tal insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610. doi:10.1038/s41573-021-00198-1. PMID:33976384; PMCID:PMC8112476.
Jun L, Robinson M, Geetha T, Broderick TL, Babu JR. Prevalence and mechanisms of skeletal muscle atrophy in metabolic conditions. Int J Mol Sci. 2023;24(3):2973. doi:10.3390/ijms24032973. PMID:36769296; PMCID:PMC9917738.

This work is licensed under a Creative Commons Attribution 4.0 International License.

